Botnet Detection Using Honeypots

Kalaitzidakis Vasileios

Athens, June 2009

What Is Botnet

- A Botnet is a large number of compromised computers, controlled by one or more Command-and-Control Servers, the Botmasters
- RoBot Network also called "zombie army"
- The history of botnets began in 1999:
 - The first IRC Bot, Pretty Park worm, appeared
- Botnets are used for:
 - Distributed DoS Attacks
 - Spam
 - Identity Theft
 - Click Fraud
 - Virus propagation
 - ...
- Rising Underground Economy

How Do Botnets Work

- Installation of malicious software
 - Exploitation
 - Download infected files (P2P, malicious sites, email attachments)
- The infected machine contacts the BotMaster for a mission
- Botmaster sends back mission information
- Bot executes mission and returns results
- Bots can periodically be updated

Botnet Architectures

- Centralized
 - All computers are connected to a single C&C center
 - The most widespread type
 - Easier to deploy
 - Single point of failure
 - IRC, IM
- Decentralized
 - P2P botnet
 - Commands are transferred from bot to bot
 - Botmaster needs access to at least one bot
- Hybrid / Random
 - Theoretical

Growing Internet Threat

According to

- Symantec:
 - 1,656,227 new signatures in 2008
 - 165% up from last year
- ShadowServer:
 - Botnets are growing
 - Botnet size is also growing

Detection Techniques Taxonomy (1)

- Host-based detection
 - Antivirus Programs
 - Log Files Investigation (Administrator should periodically examine Logs)
 - Log Files Correlation (Log files size correlation between different hosts)
 - Monitoring function calls (Keylogging activities, *GetKeyboardState* or *GetAsyncKeyState*, *WriteFile*, *outgoing traffic*)
- Network-based detection...
 - IP Headers inspection
 - Monitoring DNS traffic to C&C domains
 - Non-SMTP-server sending emails (spam)
 - High rates of TCP or UDP connections (bots using P2P networks)

Detection Techniques Taxonomy (2)

- ...Network-based detection
 - Payload inspection
 - C&C traffic (known commands)
 - Propagation or attacks (exploit code)
 - Signature-based detection (IDSs)
 - Malicious flow patterns
 - Anomaly-based detection
 - Abnormal Behavior (Normal behavior knowledge, Response time, Synchronization)
- Detection Using Honeypots
 - Robots cannot easily identify victims from honeypots
 - Robots have to send noticeable traffic

Honeypot Technology

- Honeypot: system used to capture attackers activities
 - Low-Interaction
 - emulate services and systems
 - do not offer full access to the underlying system
 - used in production environments
 - Nepenthes, Honeyd, Honeytrap
 - High-Interaction
 - Real operating system
 - full control over the honeypot
 - used in a research role
 - Honeywall CDROM
- Honeynet: network of two or more honeypots for attackers to interact with

Used Tools

- Honeywall CDROM
 - Honeynet Gateway
 - Fedora Core 6
 - Two layer 2 network interfaces
 - Walleye interface
 - Remote administration and data analysis tool
 - Third network interface
- Sebek
 - Kernel level rootkit
 - Client installed on honeypots
 - Server on Honeywall
 - Monitor system processes
- Honeysnap
 - Basic data analysis tool
 - IRC, HTTP, DNS traffic
- Test Bed Process Monitor
 - Windows XP System Updated
 - Monitor all system activities (file system, registry, processes, network connections)

The Honeynet Deployment

The Honeypots

- Windows XP Professional SP1
 - Default Windows Services
 - Port 135/tcp, Microsoft Remote Procedure Call
 - Port 139/tcp, NETBIOS Session
 - Port 445/tcp, Microsoft Directory Services
- Windows XP Professional SP3
 - Default Windows Services
 - IIS web server v5.1
 - Microsoft SQL server 2005
 - Windows SMTP server
- Windows XP Professional Up To Date
 - Default Windows Services
- Ubuntu Server 7.10
 - OpenSSH server
 - VSFTPD server
 - Username: user / Password: password

Methodology Of Analysis

- Communication Traffic Data
 - Windows XP SP1 & SP3
 - IRC
 - HTTP
 - DNS
 - SMTP
- Outgoing Attacks
 - Windows XP SP1 & SP3
 - Top Destination Ports
 - IP Addresses
- Incoming Attacks
 - Windows XP Up To Date & Ubuntu Server 7.10
 - Top Destination Ports
 - IP Addresses

Data Analysis - Communication

• IRC

- Ports 1030, 1099, 1828, 1061,1070
- Over 30 IRC Channels
 - ##russia##
 - irc.priv8net.com
- HTTP
 - File Downloads
 - "GET http://72.10.169.26/ssvc.exe"
 - "GET http://72.10.169.26/ub.exe"
 - "GET http://rsfq.info/demo.exe"
 - XML communication
- DNS
 - 192.168.1.1 & 194.219.227.2 Servers
 - Queries include mail servers
 - justforclickz.com
 - mail.ru
 - yahoo.com

• SMTP

- 220 hotmail.com Kerio MailServer 5.5.0 ESMTP ready
- 250 hotmail.com
- 250 2.1.0 Sender
 - <rwfstegxnbo@loughgs.leics.sch.uk> ok
- 354 Enter mail, end with CRLF.CRLF
- 250 2.0.0 6f37855f7fcd14d5da0385837a595cab Message accepted for delivery

Data Analysis – Outgoing Attacks

- Top Destination Ports
 - 135 for Windows XP SP1
 - 445 for Windows XP SP3
- Destination Networks
 - ISP's Network
 - Nat
- Attack Strategies
 - Portsweep at 135,445
- About 20 different processes observed

Aggregate By	Aggregate Totals								
Destination Port 💌	Flows	Alerts	SRC Ports	DST Ports	SRC pkts	SRC bytes	DST pkts	DST bytes	
epmap	25,201	72	3,894	1	26,137	876,930	1,041	28,032	
netbios-ns	152	0	3	1	2,204	146,882	168	11,969	
netbios-dgm	126	0	2	1	513	96,955	0	0	
netbios-ssn	117	7	79	1	883	69,026	481	39,455	

Aggregate By	Aggregate Totals							
Destination Port 💌	Flows	Alerts	SRC Ports	DST Ports	SRC pkts	SRC bytes	DST pkts	DST bytes
microsoft-ds	54,752	16	3,974	1	44,643	1,249,812	353	17,972
domain	511	585	400	1	3,038	115,494	1,252	89,323
netbios-dgm	100	0	1	. 1	186	39,177	0	0
https	66	0	61	. 1	1,500	122,979	1,956	2,082,383

Aggregate By	Aggregate Totals							
Destination IP 🛛 🔽	Flows	Alerts	SRC	DST	SRC	SRC	DST	DST
			Ports	Ports	pkts	bytes	pkts	bytes
77.49.253.236	1	0	1	1	1	28	0	0
77.49.253.235	1	0	1	1	1	28	0	56
77.49.253.234	1	0	1	1	1	28	0	0
77,49,253,233	1	0	1	1	1	28	0	0
77,49,253,232	1	0	1	1	1	28	0	0
77.49.253.231	1	0	1	1	1	28	0	0
77,49,253,230	1	0	1	1	1	28	0	0
77,49,253,229	1	0	1	1	1	28	0	0
77,49,253,228	1	0	1	1	1	28	0	0

Data Analysis – Incoming Attacks

- Top Destination Ports
 - 135, 445,139 for Windows
 - 22 for Ubuntu
- Source IP addresses
 - ISP's Network
 - 445, 135, 139, 137, 23
 - Global
 - 80, 22, 25
- Attack Strategies
 - Scan and run exploits
 - e.g. 62.1.236.74 → 445, 135, 80
 - Brute force
 - e.g. 61.243.232.120 → 139, 1419 packets
 - e.g. 77.245.148.115 → 22, 5838 packets
- Attack rates
 - 10 -30 per hour for Windows
 - 5-10 per day for Ubuntu

Snort Alerts

- Port 445
 - NETBIOS SMB-DS IPC\$ share access
 - NETBIOS SMB-DS srvsvc NetrPathCanonicalize WriteAndX little endian overflow attempt
 - NETBIOS SMB-DS srvsvc NetrPathCanonicalize little endian overflow attempt
- Port 135
 - NETBIOS DCERPC NCACN-IP-TCP IActivation remoteactivation little endian overflow attempt
 - NETBIOS DCERPC NCACN-IP-TCP ISystemActivator RemoteCreateInstance little endian attempt
- Port 139
 - NETBIOS SMB srvsvc NetrPathCanonicalize WriteAndX unicode little endian overflow attempt
 - NETBIOS SMB repeated logon failure

Main Findings

- Botnets
 - Many active "old-fashioned" botnets, easy to detect
 - Most of bots are single users pcs
- Outgoing Attacks
 - Most of attacks target ports 135 & 445
 - Main attack strategy is port sweep
 - Destinations are ISP's & Nat networks
- Incoming Attacks
 - Most of attacks target ports 135, 145, 139, 22
 - Attacks at windows services mostly come from ISP's network
 - 300 different IPs found within 5 days

Conclusions

- We employed honeynet to study the current attacks employed by botnets
- Our methodology produced clear conclusions
- General
 - A single detection technique is not able to detect all botnets
 - Updating system is a good defense
 - Using honeypot is easy to detect a large number of compromised machines within ISP's network

Future Work

- Honeynet within ISP's network architecture
 - System consists of a number of honeypots in order to:
 - Capture traffic data
 - Recognize attacks
 - Discover IP addresses of compromised machines
 - Alert users
 - Inform other ISPs using a trust based model

End Of Slides

Thank you!